Solutions to Question Sheet 10, Riemann Integration. v1 2019-20

1. Let $f(x)=x^{3}$ on $[0,1]$ and let \mathcal{P}_{n} be the arithmetic partition that splits $[0,1]$ into n equal subintervals.

Evaluate $U\left(\mathcal{P}_{n}, f\right)$ and $L\left(\mathcal{P}_{n}, f\right)$.
Thus show that f is Riemann integrable on $[0,1]$ and find the value of

$$
\int_{0}^{1} x^{3} d x
$$

You may need to recall $\sum_{i=1}^{n} i^{3}=n^{2}(n+1)^{2} / 4$.
Solution The arithmetic partition of $[0,1]$ is

$$
\mathcal{P}_{n}=\left\{\frac{i}{n}: 0 \leq i \leq n\right\} .
$$

The function $f(x)=x^{3}$ is increasing on \mathbb{R}, so

$$
\begin{aligned}
& M_{i}=\sup \left\{f(x): \frac{i-1}{n} \leq x \leq \frac{i}{n}\right\}=\left(\frac{i}{n}\right)^{3} \\
& m_{i}=\inf \left\{f(x): \frac{i-1}{n} \leq x \leq \frac{i}{n}\right\}=\left(\frac{i-1}{n}\right)^{3}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& U\left(\mathcal{P}_{n}, f\right)=\sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3} \frac{1}{n}=\frac{1}{n^{4}} \sum_{i=1}^{n} i^{3}, \\
& L\left(\mathcal{P}_{n}, f\right)=\sum_{i=1}^{n}\left(\frac{i-1}{n}\right)^{3} \frac{1}{n}=\frac{1}{n^{4}} \sum_{i=1}^{n}(i-1)^{3}=\frac{1}{n^{4}} \sum_{j=1}^{n-1} j^{3},
\end{aligned}
$$

on writing $j=i-1$. Sum these arithmetic series using the given recollection to get

$$
\begin{aligned}
& U\left(\mathcal{P}_{n}, f\right)=\frac{1}{n^{4}} \frac{n^{2}(n+1)^{2}}{4}=\frac{1}{4}\left(1+\frac{1}{n}\right)^{2} \\
& L\left(\mathcal{P}_{n}, f\right)=\frac{1}{n^{4}} \frac{(n-1)^{2} n^{2}}{4}=\frac{1}{4}\left(1-\frac{1}{n}\right)^{2} .
\end{aligned}
$$

From the theory of integration we have,

$$
L\left(\mathcal{P}_{n}, f\right) \leq \underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f \leq U\left(\mathcal{P}_{n}, f\right)
$$

or, in our case,

$$
\frac{1}{4}\left(1-\frac{1}{n}\right)^{2} \leq \underline{\int_{0}^{1}} f(x) d x \leq \overline{\int_{0}^{1}} f(x) d x \leq \frac{1}{4}\left(1+\frac{1}{n}\right)^{2}
$$

for all $n \geq 1$. Let $n \rightarrow \infty$ to see that we must have equality in the centre, that is $\underline{\int_{0}^{1}} f(x) d x=\overline{\int_{0}^{1}} f(x) d x$. Thus $f(x)=x^{3}$ is Riemann integrable over $[0,1]$. The common value is $1 / 4$ so

$$
\int_{0}^{1} x^{3} d x=\frac{1}{4}
$$

2. i) Integrate $f(x)=x^{2}$ over [1,2] by using the arithmetic partition of $[1,2]$ into n equal subintervals.
ii) Integrate $f(x)=x^{2}$ over [1,2] by using the geometric partition

$$
\mathcal{Q}_{n}=\left\{1, \eta, \eta^{2}, \eta^{3}, \ldots, \eta^{n}=2\right\},
$$

where η is the $n^{\text {th }}$-root of 2 .
Solution i. The arithmetic partition of [1, 2] is

$$
\mathcal{P}_{n}=\left\{1+\frac{i}{n}: 0 \leq i \leq n\right\} .
$$

Since $f(x)=x^{2}$ is increasing on \mathbb{R} we have

$$
\begin{aligned}
& M_{i}=\sup \left\{f(x): 1+\frac{i-1}{n} \leq x \leq 1+\frac{i}{n}\right\}=\left(1+\frac{i}{n}\right)^{2} \\
& m_{i}=\inf \left\{f(x): 1+\frac{i-1}{n} \leq x \leq 1+\frac{i}{n}\right\}=\left(1+\frac{i-1}{n}\right)^{2}
\end{aligned}
$$

Since the expression for M_{i} is slightly simpler then that for m_{i} we consider first the Upper Sum:

$$
\begin{aligned}
U\left(\mathcal{P}_{n}, f\right) & =\sum_{i=1}^{n}\left(1+\frac{i}{n}\right)^{2} \frac{1}{n}=\frac{1}{n} \sum_{i=1}^{n}\left(1+\frac{2 i}{n}+\frac{i^{2}}{n^{2}}\right) \\
& =\frac{1}{n}\left(n+\frac{2}{n} \frac{n(n+1)}{2}+\frac{1}{n^{2}} \frac{n(n+1)(2 n+1)}{6}\right) \\
& =\frac{6 n^{3}+6 n^{2}(n+1)+n(n+1)(2 n+1)}{6 n^{3}} \\
& =\frac{14 n^{2}+9 n+1}{6 n^{2}} .
\end{aligned}
$$

For the Lower Sum we wish to reuse work and so attempt to relate the Lower Sum to the Upper Sum.

$$
\begin{aligned}
L\left(\mathcal{P}_{n}, f\right) & =\sum_{i=1}^{n}\left(1+\frac{(i-1)}{n}\right)^{2} \frac{1}{n}=\sum_{j=0}^{n-1}\left(1+\frac{j}{n}\right)^{2} \frac{1}{n} \\
& =\sum_{j=1}^{n}\left(1+\frac{j}{n}\right)^{2} \frac{1}{n}+\left(1+\frac{0}{n}\right)^{2} \frac{1}{n}-\left(1+\frac{n}{n}\right)^{2} \frac{1}{n} \\
& =U\left(\mathcal{P}_{n}, f\right)+\frac{1}{n}-\frac{4}{n} \\
& =\frac{14 n^{2}+9 n+1}{6 n^{2}}-\frac{3}{n} \\
& =\frac{14 n^{2}-9 n+1}{6 n^{2}} .
\end{aligned}
$$

As in the last question the theory gives

$$
\frac{14 n^{2}-9 n+1}{6 n^{2}} \leq \underline{\int_{1}^{2}} f(x) d x \leq \overline{\int_{1}^{2}} f(x) d x \leq \frac{14 n^{2}+9 n+1}{6 n^{2}} .
$$

Let $n \rightarrow \infty$ to deduce that the Riemann integral exists and

$$
\int_{1}^{2} x^{2} d x=\frac{7}{3} .
$$

ii. Let

$$
\mathcal{Q}_{n}=\left\{\eta^{i}: 0 \leq i \leq n\right\}
$$

with $\eta=\sqrt[n]{2}$, be the geometric partition of $[1,2]$. Then

$$
\begin{aligned}
& M_{i}=\sup \left\{f(x): \eta^{i-1} \leq x \leq \eta^{i}\right\}=\left(\eta^{i}\right)^{2} \\
& m_{i}=\inf \left\{f(x): \eta^{i-1} \leq x \leq \eta^{i}\right\}=\left(\eta^{i-1}\right)^{2}
\end{aligned}
$$

Again the expression for M_{i} is slightly simpler than that for m_{i}, so consider

$$
\begin{aligned}
U\left(\mathcal{Q}_{n}, f\right) & =\sum_{i=1}^{n}\left(\eta^{i}\right)^{2}\left(\eta^{i}-\eta^{i-1}\right)=\left(1-\eta^{-1}\right) \sum_{i=1}^{n}\left(\eta^{3}\right)^{i} \\
& =\left(1-\eta^{-1}\right) \frac{\eta^{3}}{\eta^{3}-1}\left(\eta^{3 n}-1\right)
\end{aligned}
$$

on summing the geometric series,

$$
\begin{aligned}
& =\left(1-\eta^{-1}\right) \frac{7 \eta^{3}}{\eta^{3}-1} \quad \text { since } \eta^{n}=2, \\
& =\frac{7(1-\eta) \eta^{2}}{(1-\eta)\left(1+\eta+\eta^{2}\right)}=\frac{7 \eta^{2}}{1+\eta+\eta^{2}} .
\end{aligned}
$$

Note in evaluating $U\left(\mathcal{Q}_{n}, f\right)$ do not argue as

$$
U\left(\mathcal{Q}_{n}, f\right)=\sum_{i=1}^{n}\left(\eta^{i}\right)^{2}\left(\eta^{i}-\eta^{i-1}\right)=\sum_{i=1}^{n}\left(\eta^{i}\right)^{2} \eta^{i}-\sum_{i=1}^{n}\left(\eta^{i}\right)^{2} \eta^{i-1} .
$$

Having two summations simply doubles the chance of making an error.
For the Lower Sum we first express m_{i} in terms of M_{i} so we can write the Lower Sum in terms of the Upper Sum and then reuse the calculation above. (No need to do the same work twice.) Thus

$$
m_{i}=\left(\eta^{i-1}\right)^{2}=\eta^{-2}\left(\eta^{i}\right)^{2}=\eta^{-2} M_{i} .
$$

So

$$
\begin{aligned}
L\left(\mathcal{Q}_{n}, f\right) & =\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right)=\eta^{-2} \sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right) \\
& =\eta^{-2} U\left(\mathcal{Q}_{n}, f\right)=\frac{7}{1+\eta+\eta^{2}} .
\end{aligned}
$$

Hence

$$
\frac{7}{1+\eta+\eta^{2}} \leq \int_{1}^{2} f(x) d x \leq \overline{\int_{1}^{2}} f(x) d x \leq \frac{7 \eta^{2}}{1+\eta+\eta^{2}}
$$

Let $n \rightarrow \infty$ when $\eta \rightarrow 1$ and we again deduce that the Riemann integral exists and

$$
\int_{1}^{2} x^{2} d x=\frac{7}{3} .
$$

3. Integrate $f(x)=1 / x^{3}$ over [2,3] by using the geometric partition

$$
\mathcal{Q}_{n}=\left\{2,2 \eta, 2 \eta^{2}, 2 \eta^{3}, \ldots, 2 \eta^{n}=3\right\},
$$

where η is the $n^{\text {th }}$-root of $3 / 2$.
Solution Let

$$
\mathcal{Q}_{n}=\left\{2,2 \eta, 2 \eta^{2}, 2 \eta^{3}, \ldots, 2 \eta^{n}=3\right\},
$$

where η is the $n^{\text {th }}$-root of $3 / 2$. Then for $1 \leq i \leq n$ we have

$$
\left[x_{i-1}, x_{i}\right]=\left[2 \eta^{i-1}, 2 \eta^{i}\right] .
$$

The function $f(x)=x^{-3}$ is decreasing so

$$
\begin{aligned}
& M_{i}=\sup \left\{f(x): 2 \eta^{i-1} \leq x \leq 2 \eta^{i}\right\}=\frac{1}{\left(2 \eta^{i-1}\right)^{3}}, \\
& m_{i}=\inf \left\{f(x): 2 \eta^{i-1} \leq x \leq 2 \eta^{i}\right\}=\frac{1}{\left(2 \eta^{i}\right)^{3}} .
\end{aligned}
$$

Since the expression for m_{i} is slightly simpler we look first at the Lower Sum.

$$
\begin{aligned}
L\left(\mathcal{Q}_{n}, f\right) & =\sum_{i=1}^{n}\left(2 \eta^{i}\right)^{-3}\left(2 \eta^{i}-2 \eta^{i-1}\right)=\frac{2}{2^{3}}\left(1-\eta^{-1}\right) \sum_{i=1}^{n}\left(\eta^{-2}\right)^{i} \\
& =\frac{1}{4}\left(1-\eta^{-1}\right) \frac{\eta^{-2}}{1-\eta^{-2}}\left(1-\eta^{-2 n}\right)
\end{aligned}
$$

on summing the geometric series,

$$
\begin{aligned}
& =\frac{1}{4}\left(1-\eta^{-1}\right) \frac{1}{\eta^{2}-1} \frac{5}{9} \quad \text { since } \eta^{n}=3 / 2, \\
& =\frac{5}{36} \frac{\eta-1}{\eta} \frac{1}{(\eta+1)(\eta-1)}=\frac{5}{36 \eta(1+\eta)} .
\end{aligned}
$$

For the Upper Sum we have

$$
M_{i}=\frac{1}{\left(2 \eta^{i-1}\right)^{3}}=\frac{\eta^{3}}{\left(2 \eta^{i}\right)^{3}}=\eta^{3} m_{i} .
$$

Thus

$$
\begin{aligned}
U\left(\mathcal{Q}_{n}, f\right) & =\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)=\eta^{3} \sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right) \\
& =\eta^{3} L\left(\mathcal{Q}_{n}, f\right)=\frac{5 \eta^{2}}{36(1+\eta)} .
\end{aligned}
$$

Let $n \rightarrow \infty$ when $\eta \rightarrow 1$ and we again deduce that the Riemann integral exists and

$$
\int_{2}^{3} \frac{d x}{x^{3}}=\frac{5}{72} .
$$

4. i) If the function $h:[a, b] \rightarrow \mathbb{R}$ is bounded, Riemann integrable and satisfies $h(x) \geq 0$ for all $x \in[a, b]$, show that

$$
\int_{a}^{b} h(x) d x \geq 0
$$

Hint What does $h(x) \geq 0$ for all $x \in[a, b]$ say about any Lower Sum? What does it then say about the Lower Integral of h ? Use also the fact that h is Riemann integrable implies that the lower and upper integrals both exist and are equal.
ii) Prove that if the functions f and g, are bounded on $[a, b]$, and satisfy $f(x) \leq g(x)$ for all $x \in[a, b]$, then

$$
\underline{\int_{a}^{b}} f \leq \underline{\int_{a}^{b}} g \text { and } \overline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} g .
$$

iii) Prove that if the Riemann integrable functions f and g satisfy $f(x) \leq g(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f \leq \int_{a}^{b} g
$$

Solution i. For any partition \mathcal{P} of $[a, b]$, the fact that $h(x) \geq 0$ for all $x \in[a, b]$ means that $L(\mathcal{P}, h) \geq 0$. So

$$
\begin{aligned}
\int_{a}^{b} h & =\underline{\int_{a}^{b} h} \text { since } h \text { is integrable, } \\
& =\operatorname{lub}\{L(\mathcal{P}, h): \mathcal{P} \text { partition }\}, \quad \text { by definition of } \underline{\int_{a}^{b}} \\
& \geq 0 .
\end{aligned}
$$

ii. Let a partition \mathcal{P} of $[a, b]$ be given. On any interval $\left[x_{i-1}, x_{i}\right]$, the inequality $f(x) \leq g(x)$ means that

$$
\begin{aligned}
M_{i}^{f} & =\operatorname{lub}_{\left[x_{i-1}, x_{i}\right]} f(x) \leq \operatorname{lub}_{\left[x_{i-1}, x_{i}\right]} g(x)=M_{i}^{g}, \\
m_{i}^{f} & =\underset{\left[x_{i-1}, x_{i}\right]}{\operatorname{glb}} f(x) \leq \underset{\left[x_{i-1}, x_{i}\right]}{\operatorname{glb}} g(x)=m_{i}^{g} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
L(\mathcal{P}, f) \leq L(\mathcal{P}, g) \quad \text { and } \quad U(\mathcal{P}, f) \leq U(\mathcal{P}, g) \tag{1}
\end{equation*}
$$

for all \mathcal{P}.
By definition $\underline{\int_{a}^{b} g}$ is an upper bound for all $L(\mathcal{P}, g)$ as \mathcal{P} varies. From (1) we then get that $\underline{\int_{a}^{b}} g$ is an upper bound for $\{L(\mathcal{P}, f): \mathcal{P}\}$. Yet by definition $\underline{\int_{a}^{b} f}$ is the least of all upper bounds of this set, and so

$$
\begin{equation*}
\underline{\int_{a}^{b}} f \leq \underline{\int_{a}^{b} g} \tag{2}
\end{equation*}
$$

Similarly, $\overline{\int_{a}^{b}} f$ is a lower bound for all $U(\mathcal{P}, f)$ as \mathcal{P} varies. Again from (1) we then get that $\overline{\int_{a}^{b}} f$ is a lower bound for $\{U(\mathcal{P}, g): \mathcal{P}\}$. Yet by definition $\overline{\int_{a}^{b}} g$ is the greatest of all lower bounds of this set, and so

$$
\overline{\int_{a}^{b}} g \geq \overline{\int_{a}^{b}} f
$$

iii. The fact that f and g are Riemann integrable gives

$$
\begin{array}{rlr}
\int_{a}^{b} f & =\underline{\int_{a}^{b}} f & \text { since } f \text { is Riemann integrable } \\
& \leq \underline{\int_{a}^{b} g} & \text { by }(2) \\
& =\int_{a}^{b} g & \text { since } g \text { is Riemann integrable. }
\end{array}
$$

5. Integrate $f(x)=x^{2}-x$ over $[2,5]$ by using
i) the arithmetic partition of $[2,5]$ into n equal length subintervals and
ii) the geometric partition of $[2,5]$ into n intervals.

Solution i. Let $f(x)=x^{2}-x$ and

$$
\mathcal{P}_{n}=\left\{2+\frac{3 i}{n}: 0 \leq i \leq n\right\}
$$

an arithmetic partition of $[2,5]$. The function f is increasing for $x>1 / 2$ and thus on this interval. Hence

$$
\begin{aligned}
M_{i} & =\sup \left\{f(x): 2+\frac{3(i-1)}{n} \leq x \leq 2+\frac{3 i}{n}\right\} \\
& =\left(2+\frac{3 i}{n}\right)^{2}-\left(2+\frac{3 i}{n}\right) \\
m_{i} & =\inf \left\{f(x): 2+\frac{3(i-1)}{n} \leq x \leq 2+\frac{3 i}{n}\right\} \\
& =\left(2+\frac{3(i-1)}{n}\right)^{2}-\left(2+\frac{3(i-1)}{n}\right)
\end{aligned}
$$

Consider first the Upper Sum:

$$
\begin{aligned}
U\left(\mathcal{P}_{n}, f\right) & =\sum_{i=1}^{n}\left\{\left(2+\frac{3 i}{n}\right)^{2}-\left(2+\frac{3 i}{n}\right)\right\} \frac{3}{n} \\
& =\frac{3}{n} \sum_{i=1}^{n}\left(2+\frac{9 i}{n}+\frac{9 i^{2}}{n^{2}}\right) \\
& =\frac{3}{n}\left(2 n+\frac{9}{n} \frac{n(n+1)}{2}+\frac{9}{n^{2}} \frac{n(n+1)(2 n+1)}{6}\right) \\
& =\frac{\left(12 n^{3}+27 n^{2}(n+1)+9 n(n+1)(2 n+1)\right)}{2 n^{3}} \\
& =\frac{57 n^{2}+54 n+9}{2 n^{2}} .
\end{aligned}
$$

For the Lower Sum

$$
L\left(\mathcal{P}_{n}, f\right)=\sum_{i=1}^{n}\left\{\left(2+\frac{3(i-1)}{n}\right)^{2}-\left(2+\frac{3(i-1)}{n}\right)\right\} \frac{3}{n} .
$$

Change variable from i to $j=i-1$ so the sum now runs from 0 to $n-1$:

$$
L\left(\mathcal{P}_{n}, f\right)=\sum_{j=0}^{n-1}\left\{\left(2+\frac{3 j}{n}\right)^{2}-\left(2+\frac{3 j}{n}\right)\right\} \frac{3}{n} .
$$

Next, express this in terms of $U\left(\mathcal{P}_{n}, f\right)$,

$$
\begin{aligned}
L\left(\mathcal{P}_{n}, f\right)= & U\left(\mathcal{P}_{n}, f\right)+\left\{\left(2+\frac{3 \times 0}{n}\right)^{2}-\left(2+\frac{3 \times 0}{n}\right)\right\} \frac{3}{n} \\
& -\left\{\left(2+\frac{3 \times n}{n}\right)^{2}-\left(2+\frac{3 \times n}{n}\right)\right\} \frac{3}{n} \\
= & U\left(\mathcal{P}_{n}, f\right)+\frac{6}{n}-\frac{60}{n} \\
= & \frac{57 n^{2}+54 n+9}{2 n^{2}}-\frac{54}{n} \\
= & \frac{57 n^{2}-54 n+9}{2 n^{2}} .
\end{aligned}
$$

From the theory we have

$$
\begin{aligned}
\frac{57 n^{2}-54 n+9}{2 n^{2}} & \leq \underline{\int_{2}^{5}} f(x) d x \\
& \leq \overline{\int_{2}^{5}} f(x) d x \leq \frac{57 n^{2}+54 n+9}{2 n^{2}}
\end{aligned}
$$

Let $n \rightarrow \infty$ to deduce that the Riemann integral exists and

$$
\int_{2}^{5}\left(x^{2}-x\right) d x=\frac{57}{2}
$$

ii) Let

$$
\mathcal{Q}_{n}=\left\{2 \eta^{i}: 0 \leq i \leq n\right\}
$$

with $\eta=\sqrt[n]{5 / 2}$, be the geometric partition of $[2,5]$. Then, since f is increasing on $[2,5]$,

$$
\begin{aligned}
& M_{i}=\sup \left\{f(x): 2 \eta^{i-1} \leq x \leq 2 \eta^{i}\right\}=\left(2 \eta^{i}\right)^{2}-2 \eta^{i} \\
& m_{i}=\inf \left\{f(x): 2 \eta^{i-1} \leq x \leq 2 \eta^{i}\right\}=\left(2 \eta^{i-1}\right)^{2}-2 \eta^{i-1}
\end{aligned}
$$

Thus

$$
\begin{aligned}
U\left(\mathcal{Q}_{n}, f\right) & =\sum_{i=1}^{n}\left(\left(2 \eta^{i}\right)^{2}-2 \eta^{i}\right)\left(2 \eta^{i}-2 \eta^{i-1}\right) \\
& =\left(1-\eta^{-1}\right)\left(8 \sum_{i=1}^{n}\left(\eta^{3}\right)^{i}-4 \sum_{i=1}^{n}\left(\eta^{2}\right)^{i}\right) \\
& =\left(1-\eta^{-1}\right)\left(8 \frac{\eta^{3}}{\eta^{3}-1}\left(\eta^{3 n}-1\right)-4 \frac{\eta^{2}}{\eta^{2}-1}\left(\eta^{2 n}-1\right)\right)
\end{aligned}
$$

on summing the geometric series,

$$
=117\left(1-\eta^{-1}\right) \frac{\eta^{3}}{\eta^{3}-1}-21\left(1-\eta^{-1}\right) \frac{\eta^{2}}{\eta^{2}-1}
$$

since $\eta^{n}=5 / 2$,
$=\frac{117(1-\eta) \eta^{2}}{(1-\eta)\left(1+\eta+\eta^{2}\right)}-21(1-\eta) \frac{\eta}{(1-\eta)(1+\eta)}$
$=117 \frac{\eta^{2}}{1+\eta+\eta^{2}}-21 \frac{\eta}{1+\eta}$.
For the Lower Sum we have

$$
\begin{aligned}
L\left(\mathcal{Q}_{n}, f\right) & =\sum_{i=1}^{n}\left(\left(2 \eta^{i-1}\right)^{2}-2 \eta^{i-1}\right)\left(2 \eta^{i}-2 \eta^{i-1}\right) \\
& =\left(1-\eta^{-1}\right)\left(\frac{8}{\eta^{2}} \sum_{i=1}^{n}\left(\eta^{3}\right)^{i}-\frac{4}{\eta} \sum_{i=1}^{n}\left(\eta^{2}\right)^{i}\right) \\
& =117 \frac{1}{1+\eta+\eta^{2}}-21 \frac{1}{1+\eta} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{117}{1+\eta+\eta^{2}}-21 \frac{1}{1+\eta} & \leq \underline{\int_{1}^{2}} f(x) d x \\
& \leq \overline{\int_{1}^{2}} f(x) d x \leq 117 \frac{\eta^{2}}{1+\eta+\eta^{2}}-21 \frac{\eta}{1+\eta} .
\end{aligned}
$$

Let $n \rightarrow \infty$ when $\eta \rightarrow 1$ and we again deduce that the Riemann integral exists and

$$
\int_{1}^{2}\left(x^{2}-x\right) d x=\frac{117}{3}-\frac{21}{2}=\frac{57}{2} .
$$

6. Definition If f is continuous on (a, b) and F is continuous on $[a, b]$ and and differentiable on (a, b) with $F^{\prime}(x)=f(x)$ for all $x \in(a, b)$ then F is a primitive for f.

Find primitives for
(i) $\frac{1}{\sqrt{1-x^{2}}}$,
(ii) $\frac{x}{\sqrt{1-x^{2}}}$,
(iii) $\frac{1}{\sqrt{1+x^{2}}}$.
iv) $\frac{x}{\sqrt{1+x^{2}}}$,
v) $\frac{1}{1+x^{2}}$,
vi) $\frac{x}{1+x^{2}}$.

Solution A primitive of
i. $1 / \sqrt{1-x^{2}}$ is $\arcsin x$, by Question 8ii, Sheet 7,
ii. $x / \sqrt{1-x^{2}}$ is $-\sqrt{1-x^{2}}$
iii. $1 / \sqrt{1+x^{2}}$ is $\sinh ^{-1} x$, by Question 10i, Sheet 7,
iv. $x / \sqrt{1+x^{2}}$ is $\sqrt{1+x^{2}}$.
v. $1 /\left(1+x^{2}\right)$ is $\arctan x$, by Question 8iii, Sheet 7,
vi. $x /\left(1+x^{2}\right)$ is $\ln \sqrt{\left(1+x^{2}\right)}$.
7. The Fundamental Theorem of Calculus says, in part, that if f is continuous on (a, b) then $F(x)=\int_{a}^{x} f(t) d t$ is a primitive for $f(x)$ on (a, b).
Prove that $\ln x$, defined earlier as the inverse of e^{x}, satisfies

$$
\ln x=\int_{1}^{x} \frac{d t}{t}
$$

for all $x>0$.
Hint: Find two primitives for $f:(0, \infty) \rightarrow \mathbb{R}, x \longmapsto 1 / x$ and note that primitives are unique up to a constant.

Solution From the notes we know that (as an example of differentiating inverse functions)

$$
\frac{d}{d x} \ln x=\frac{1}{x}
$$

for $x>0$ and so $\ln x$ is a primitive for $1 / x$ in this range. But, since $1 / t$ is Riemann integrable and continuous on $(0, \infty)$ we know, from the Fundamental Theorem of Calculus, that

$$
F(x):=\int_{1}^{x} \frac{d t}{t}\left(=-\int_{x}^{1} \frac{d t}{t} \text { if } x<1\right)
$$

is also a primitive for $1 / x$. Primitives are unique up to a constant, so

$$
\ln x=\int_{1}^{x} \frac{d t}{t}+C
$$

for some constant C. Put $x=1$ to find that $C=0$.

Solutions to Additional Questions

8. Integrate $f(x)=x^{2}-6 x+10$ over $[2,5]$ using the arithmetic partition of $[2,5]$ into $3 n$ equal length subintervals.

Note how we look at $\mathcal{P}_{3 n}$ and not \mathcal{P}_{n}, ask yourself why.
Solution Let $f(x)=x^{2}-6 x+10$ on $[2,5]$. This time $f^{\prime}(x)=2 x-6$ so f increases for $x>3$ and decreases for $x<3$.
Look at the partition

$$
\mathcal{P}_{3 n}=\left\{2+\frac{3 i}{3 n}: 0 \leq i \leq 3 n\right\}=\left\{2+\frac{i}{n}: 0 \leq i \leq 3 n\right\} .
$$

We have chosen $3 n$ instead of n so that one of the points in the partition is $x=3$, (when $i=n$) where the function has a turning point. Note that the width of the intervals in the partition is $1 / n$.

Because of the minimum at $x=3$, i.e. $i=n$, we have

$$
M_{i}=\sup \left\{f(x): x_{i-1} \leq x \leq x_{i}\right\}= \begin{cases}f\left(x_{i-1}\right) & \text { for } 1 \leq i \leq n \\ f\left(x_{i}\right) & \text { for } n+1 \leq i \leq 3 n\end{cases}
$$

Similarly

$$
m_{i}=\sup \left\{f(x): x_{i-1} \leq x \leq x_{i}\right\}= \begin{cases}f\left(x_{i}\right) & \text { for } 1 \leq i \leq n \\ f\left(x_{i-1}\right) & \text { for } n+1 \leq i \leq 3 n\end{cases}
$$

Note that

$$
f\left(x_{i}\right)=f\left(2+\frac{i}{n}\right)=\frac{i^{2}}{n^{2}}-2 \frac{i}{n}+2,
$$

and so

$$
f\left(x_{i-1}\right)=\frac{(i-1)^{2}}{n^{2}}-2 \frac{(i-1)}{n}+2 .
$$

Hence

$$
\begin{aligned}
U\left(\mathcal{P}_{3 n}, f\right)= & \sum_{i=1}^{n}\left(\frac{(i-1)^{2}}{n^{2}}-2 \frac{(i-1)}{n}+2\right) \frac{1}{n} \\
& +\sum_{i=n+1}^{3 n}\left(\frac{i^{2}}{n^{2}}-2 \frac{i}{n}+2\right) \frac{1}{n} \\
= & \frac{1}{n^{3}} \sum_{i=1}^{n-1} i^{2}-\frac{2}{n^{2}} \sum_{i=1}^{n-1} i+2 \\
& +\frac{1}{n^{3}} \sum_{i=n+1}^{3 n} i^{2}-\frac{2}{n^{2}} \sum_{i=n+1}^{3 n} i+4
\end{aligned}
$$

We can combine two pairs of summations, noting that the $i=n$ term is missing in both. So

$$
\begin{aligned}
U\left(\mathcal{P}_{3 n}, f\right) & =\frac{1}{n^{3}}\left(\sum_{i=1}^{3 n} i^{2}-n^{2}\right)-\frac{2}{n^{2}}\left(\sum_{i=1}^{3 n} i-n\right)+6 \\
& =\frac{1}{n^{3}}\left(9 n^{3}+\frac{7}{2} n^{2}+\frac{1}{2} n\right)-\frac{2}{n^{2}}\left(\frac{9}{2} n^{2}+\frac{1}{2} n\right)+6 \\
& =\frac{12 n^{2}+5 n+1}{2 n^{2}}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
L\left(\mathcal{P}_{3 n}, f\right)= & \sum_{i=1}^{n}\left(\frac{i^{2}}{n^{2}}-2 \frac{i}{n}+2\right) \frac{1}{n} \\
& +\sum_{i=n+1}^{3 n}\left(\frac{(i-1)^{2}}{n^{2}}-2 \frac{(i-1)}{n}+2\right) \frac{1}{n} \\
= & \frac{12 n^{2}-5 n+1}{2 n^{2}}
\end{aligned}
$$

It matters not that we have $3 n$ in place of n in

$$
L\left(\mathcal{P}_{3 n}, f\right) \leq \underline{\int_{2}^{5}} f \leq \overline{\int_{2}^{5}} f \leq U\left(\mathcal{P}_{3 n}, f\right) .
$$

Thus

$$
\frac{12 n^{2}-5 n+1}{2 n^{2}} \leq \int_{2}^{5} f(x) d x \leq \overline{\int_{2}^{5}} f(x) d x \leq \frac{12 n^{2}+5 n+1}{2 n^{2}}
$$

Let $n \rightarrow \infty$ to deduce that the Riemann integral exists and

$$
\int_{2}^{5}\left(x^{2}-6 x+10\right) d x=6
$$

Note In this proof we have essentially calculated $\int_{2}^{3} f, \int_{3}^{5} f$ and added the results together. That you can do this is a result we have not had time to cover in the course.
9. Let $f:[0,1] \rightarrow \mathbb{R}$ be given by $f(0)=0$ and, for $x \in(0,1]$,

$$
f(x)=\frac{1}{n} \text { where } n \text { is the largest integer satisfying } n \leq \frac{1}{x} .
$$

Draw the graph of f. Show that f is monotonic on $[0,1]$.
Deduce that f is Riemann integrable on $[0,1]$.
Find

$$
\int_{0}^{1} f
$$

Hint. First calculate the integral over $[1 / N, 1]$ for any $N \geq 1$. Then use this in evaluating the upper and lower integrals of f over $[0,1]$.

Solution Let $0 \leq x<y \leq 1$ be given. Write n_{x} for the largest integer $n_{x} \leq 1 / x$ so $f(x)=1 / n_{x}$. Similarly n_{y} is the largest integer $\leq 1 / y$. Then

$$
x<y \Longrightarrow \frac{1}{y}<\frac{1}{x} \Longrightarrow n_{y} \leq n_{x} \Longrightarrow f(x)=\frac{1}{n_{x}} \leq \frac{1}{n_{y}}=f(y) .
$$

Hence f is a monotonic (in fact, increasing) function.

Graph of $y=f(x)$:

It can be shown that any monotonic function is Riemann integrable. Here, though, we will not assume this but first note that f is Riemann integrable over the interval $[1 / N, 1]$ for any $N \geq 1$. In fact

$$
\begin{aligned}
\int_{1 / N}^{1} f(x) d x & =\sum_{j=1}^{N-1} \int_{\frac{1}{j+1}}^{\frac{1}{j}} \frac{1}{j}=\sum_{j=1}^{N-1} \frac{1}{j}\left(\frac{1}{j}-\frac{1}{j+1}\right) \\
& =\sum_{j=1}^{N-1} \frac{1}{j^{2}}-\sum_{j=1}^{N-1} \frac{1}{j(j+1)} .
\end{aligned}
$$

Here we have a 'telescoping' series,

$$
\begin{aligned}
\sum_{j=1}^{N-1} \frac{1}{j(j+1)} & =\sum_{j=1}^{N-1}\left(\frac{1}{j}-\frac{1}{j+1}\right) \\
& =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{N-1}-\frac{1}{N}\right) \\
& =1-\frac{1}{N} .
\end{aligned}
$$

So

$$
\int_{1 / N}^{1} f(x) d x=\sum_{j=1}^{N-1} \frac{1}{j^{2}}-1+\frac{1}{N} .
$$

We cannot justify letting $N \rightarrow \infty$, instead we examine the upper and lower integrals of f.

First $f \geq 0$ implies

$$
\underline{\int_{0}^{1}} f(x) d x \geq \underline{\int_{1 / N}^{1}} f(x) d x=\int_{1 / N}^{1} f(x) d x
$$

the last step following from f being Riemann integrable over the interval of integration.
For an upper bound we note that if $0<x<1 / N$ then $N<1 / x$. So if N_{x} is the largest integer $\leq 1 / x$ we have $N_{x} \geq N$. Yet by definition $f(x)=1 / N_{x}$ and so $f(x) \leq 1 / N$. That is,

$$
0<x<\frac{1}{N} \Longrightarrow f(x) \leq \frac{1}{N}
$$

Hence

$$
\begin{aligned}
\overline{\int_{0}^{1}} f(x) d x & =\overline{\int_{0}^{1 / N}} f(x) d x+\overline{\int_{1 / N}^{1}} f(x) d x \\
& \leq \overline{\int_{0}^{1 / N}} \frac{1}{N}+\overline{\int_{1 / N}^{1}} f(x) d x=\frac{1}{N^{2}}+\int_{1 / N}^{1} f(x) d x
\end{aligned}
$$

Combining we have

$$
\int_{1 / N}^{1} f(x) d x \leq \underline{\int_{0}^{1}} f(x) d x \leq \overline{\int_{0}^{1}} f(x) d x \leq \frac{1}{N^{2}}+\int_{1 / N}^{1} f(x) d x .
$$

That is,

$$
\begin{aligned}
\sum_{j=1}^{N-1} \frac{1}{j^{2}}-1+\frac{1}{N} & \leq \underline{\int_{0}^{1}} f(x) d x \\
& \leq \overline{\int_{0}^{1}} f(x) d x \leq \sum_{j=1}^{N-1} \frac{1}{j^{2}}-1+\frac{1}{N}+\frac{1}{N^{2}}
\end{aligned}
$$

Now let $N \rightarrow \infty$, concluding that the lower and upper integrals agree and so f is Riemann integrable over $[0,1]$. Further, the value of the integral is the common value,

$$
\int_{0}^{1} f(x) d x=\sum_{j=1}^{\infty} \frac{1}{j^{2}}-1=\frac{\pi^{2}}{6}-1 .
$$

